Conceptual Integrity at Scale

The central argument of the Mythical Man Month from Fred Brooks is that conceptual integrity is the most important consideration in system design, and that conceptual integrity will only be achieved if the design comes from one, or a few resonant minds.

I will contend that conceptual integrity is the most important consideration in system design. It is better to have a system omit certain anomalous features and improvements, but to reflect one set of design ideas, than to have one that contains many good but independent and uncoordinated ideas.


Conceptual integrity in turn dictates that the design must proceed from one mind, or from a very small number of agreeing resonant minds.

If you’ve been the creative force in a group work, you will have experienced these challenges. Core ideas are misunderstood, insoncistencies start to pop up, and the result is a patchwork.

For my part, I can confirm that consistency erodes quickly if you don’t pay close attention. Maintaining conceptual integriy is hard work.

This doesn’t happen because people are dumb, neglecting or malevolent. It happens because as soon as you specialize, you lose sight of the whole. Someone does a change here, someone a change there, and both changes end up not being fully consistent with each other.

Unfortunaltely, unlike Brooks suggests, doing all the design work alone is usually not realisitc.

With a good review culture you can scale your design team from one head to a few: let people design parts of the system even if their understanding of the whole system is lacunary, and have one central person review how well the contributions fit it.

It’s like having mutliple authors for an article but having one person in charge of doing a complete pass on the article at the end to ensure consistency.

But if you want to tackle bigger challenges, you will have to scale your design team even more.

Ensuring conceptual integrity at scale is hard because it requires not only scaling knowledge but also standardizing the decision making process.

This is what guidelines try to achieve. Guidelines encode the principles, maxims, constraints, and goals of the system in a way that different people reach similar decisions. It’s evidently impossible to encode the complete decision making process in guidelines, given that so much subjective, but they help achieve a basic overall consistency.

As for the subjectivity: just take one of your colleague and ask yourself “what would he decide?” You might have a hunch at his decision, but chances are, you don’t know enough about all the thinking that went in his previous decisions to predict this one accurately. If you do, well, you’re two “reasonant” minds, as Brooks would say.

If you know lots of people will be involved in the design process, you will need more than guidelines and reviews. You will have to decompose the problem in parts that can be solved individually. Each part can be assigned one “mind”. The whole might not be fully consistent, but the solution at each level of abstraction will at least be consistent.

Following the newspaper analogy, a newspapers has an editor in chief that sets the tone of the writings and the overall orientation (these are guidelines). He or she will review the topics of the individual articles to make sure they fit in the issue of the newspaper, but he or she won’t edit every article himself (the parts).

No large system will be fully consistent (think of Microsoft Office, that our dear journalists might be using), but it doesn’t hurt too much, because no user will ever use all of the system.

Evolution will also bring some inconsistencies in the system. Moving from one system paradigm to the next is like moving from one local maxima to the next one. In between things will be worse, that is, less consistent. But if you think there’s a superior design paradigm for the whole system, it’s worth challenging the current one and see if there’s a path.

Fred Brooks is right that conceptual integrity is the most important aspect in system design. He’s also right that the more designers there are, the harder it is to ensure concistency. But for large systems that evolve, some inconsistencies are inevitable. Address them like other risks in your project.

Why a Calendar App is a Great Design Exercise

To check if a salesman is good, one classic is the “Sell me this pen” test. To check if a software designer is good, I propose the “Design me a calendar app” test.

That was one of the topic we chose for the software engineering lab, and I loved the results.

There are several reasons why it works well as a design exercise:

Everybody can relate − The domain is easily understood and everybody can relate. Who hasn’t used a calendar app?

It’s easy but not so easy − Managing events that occur once and are short is easy. But it gets more interesting as soon as events are recurring (series), span multiple days, are entered in different time zones, or have rooms associated with them. The design becomes more complex not because independent features pile up, but because the complexity of the core model increases.

Time is messy − A lot of complexity in business software comes from the fact that business rules are “arbitrary”. They make sense at the business level because of processes, domain knowledge, etc. but it’s hard to capture some clear “logic” behind them in software. Introducing such a business domain for an exercise is possible, but takes time. On the other hand, every body knows the idiosyncrasies of the Gregorian calendar already. There is little “logic” behind February having only 28 days and occasionally 29. But, yes, it means a month might sometimes overlap exactly 4 weeks and not 5. Deal with it in you UI.

It’s not just the server − This design exercise raises interesting questions not only in the backend, but also the frontend. What’s the right model? How can we display it fast? What’s the expectation of the user when the start time of a meeting is changed: to shorten it or to move it? These questions don’t have to do with the technology stack. They are inherent to the product. For questions like the last one, I recommend reading The Math of Easy-to-Use from Terry Crowley, former head of development for Microsoft Office, including Microsoft Outlook. He knows about calendar apps.

In the The Mythical Man Month, Fred Brooks explains that one of his favorite interview question is “Where is next November?”.

I have long enjoyed asking candidate programmers, “Where is next November?” If the question is too cryptic, then, “Tell me about your mental model of the calendar.” The really good programmers have strong spatial senses; they usually have geometric models of time; and they quite often understand the first question without elaboration.

Mental models of time are cultural. In western societies, time flows from left to right; the past is behind us and the future in front of us. In other societies, it’s the way around. So I wouldn’t quite expect a specific answer to this question. But I would agree with Fred Brooks that a good ability to model time is a predictor of good design skills in general.

If you don’t get much from this exercise, it will at least make you more aware of the problems that exist dealing with time in computer programs and to use libraries properly. This is a valuable programming skill on its own. The system I’m working on (a train dispatching system) doesn’t work correctly during the night of the daylight saving time (DST) change in autumn, since time jumps back if the DST offsets aren’t accounted for. If you’ve designed a calendar app once in your life, you are aware of such pitfalls.

So, please, don’t design todo apps as exercise. Design calendar apps. It develops real design skills and will make real-world software less buggy.



Fred Brooks started it all. In The Mythical Man Month, he quotes a study saying

individual difference between low and high performers can vary by an order of magnitude

Since then this myth of 10x productivity difference has persisted in our industry.

Nowadays it’s best seen in the use of words like rockstar, guru or wizard in job descriptions.

But is it really a myth, or reality?

It’s undeniable that individual differences exist. Not everybody can write an operating system kernel, a concurrent collection library, or cryptocurrency protocol. These achievements are examples of outstanding technical expertise.

Like in sports, the distribution of talent is skewed, and there are outliers that outperform others.

But here’s the catch: the 10x developer isn’t working 10x faster, he’s thinking differently. The 10x developer finds new way to address problems.

He doesn’t deal with complexity better. He finds way to avoid complexity altogether. Not occasionally, but systematically, as part of his work ethics.

A 10x developer is also a force multiplier. His actions make the work of several people easier. He inspires other to achieve excellence and clone his habits. The payoff can go above 10x.

So, myth or reality?

For me, reality. But such developers are very rare. Over the last 10 years I’ve only met one.